Tuesday 3.14/ Happy Pi Day 🥧

No matter what size the pie (the circle) is, its circumference divided by its diameter is always pi*.

*The number pi (symbol π) is a mathematical constant and is a transcendental number (a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients).
The value of pi is approximately 3.14159.
Pi appears in many formulas in mathematics and physics.

Tuesday/ it’s Venus and Jupiter ⭐️ 🌟

The clouds have cleared, and there is a nice view of the Venus-Jupiter conjunction* tonight in the Western night sky here tonight.
Hopefully the sky will be clear tomorrow night as well, when they will appear to be even closer.

*Conjunction means two astronomical objects appear close to each other in the sky, as seen from our view on Earth. Jupiter is still some 400 million miles away from Venus (on average 416 million miles away).

From EarthSky.org: Throughout February 2023, Venus and Jupiter shine brightly in the west after sunset. They edge closer together throughout the month. On the evening of February 28, 2023, they are approaching a close conjunction. As seen from the Americas, their closest pairing is shortly after sunset on March 1. After their conjunction, Venus will continue its reign as our bright “evening star” until August 2023. Jupiter will disappear in the sunset glare sometime in March.
[Chart via John Jardine Goss / EarthSky]

Saturday/ a galactic collision 🌌

The James Webb Space Telescope recorded new images of the Cartwheel galaxy.
This image is a composite made with two tools, the Near-Infrared Camera and the Mid-Infrared Instrument.
The Cartwheel Galaxy is 500 million lightyears away from us. It was created hundreds of millions of years ago when two galaxies collided.
[Image credits: NASA, ESA, CSA, STScI]

Monday/ the wrong type of sun ☀

There’s so many different worlds
So many different suns
And we have just one world
But we live in different ones
-From the song ‘Brothers in Arms’ by Dire Straits (1985)


Well, so I had to check the ‘Met’ home page (short for the Meteorological Office, the United Kingdom’s national weather service), for an official reading of the high temperatures there today.

Looks like the high was 37 °C (99 °F) at 15:00.
So: extremely warm, but not quite 40 °C.

All-time record highs were reached in many other locations in the UK and in Europe, though.

Cartoon by Christian Adams (Instagram @adamstoon) in today’s Evening Standard newspaper, a commentary on the extremely warm temperatures in London today.
Best I can tell, the ‘CLOSED’ sign is a reference to train operator Southeastern Rail explaining (this is some years ago) that delays in the trains in south London were due to ‘the wrong kind of sunlight’⁠—the angle of the winter sunlight on the dispatch monitors in the trains.
There are also reports just appearing online now of an unexpected solar flare that had erupted on the sun, and that a solar storm (magnetic field disruptions) is expected on Wednesday July 20.

Tuesday/ images, not as nebulous

neb·u·lous
/ˈnebyələs/

adjective
in the form of a cloud or haze; hazy.
“a giant nebulous glow”
(of a concept or idea) unclear, vague, or ill-defined.
“nebulous concepts like quality of life”

Similar— indistinct, indefinite, unclear, vague, hazy, cloudy, fuzzy, misty, lacking definition, blurred, blurry, out of focus, foggy, faint, shadowy, dim, obscure, shapeless, formless, unformed, amorphous, nebulose
Opposite— clear
[Definition from Oxford Languages]


One can see why astronomers are excited about the pictures from the James Webb telescope, when you put them next to pictures of Hubble (launched 30 years ago in 1990).

The Webb telescope works with infrared light and can peer through cosmic dust to provide pictures with more detail and depth.

Below are pictures of the Carina Nebula (a nebula is a gigantic could of gas and dust), located in the Carina–Sagittarius Arm of the Milky Way galaxy.
The nebula is some 8,500 light-years from Earth with a radius of 230 light years.

Top: Image taken with Hubble telescope.
Bottom: Image taken with James Webb telescope.
The Cosmic Cliffs in the Carina Nebula in an area with New General Catalogue (NGC) number 3324. The brown stuff is the edge of the giant, gaseous cavity above it, from where massive, hot, young stars emit intense ultraviolet radiation and stellar winds.
[Description and images from NASA website]

Thursday/ cooking with pressure is a pleasure

I have had my Instant Pot pressure cooker for a week now, and I’m still learning to use it —but I like it a lot.

So far I have cooked regular oats, steel-cut oats, rice, Brussels sprouts, asparagus and sweet potato in it. Asparagus is ready in an instant with an official cooking time of 0 minutes. You put them in, and they’re done. Howzat! 😂
Let me explain. The laws of physics still apply. Even if you put the water and asparagus in the cooker and tell it to cook for 0 minutes, it will still take 5-10 mins to get to the operating temperature and pressure inside. During that time it already cooks the food inside. Something as delicate as asparagus is then cooked already. Voila.

I put this sweet potato in for 20 minutes and it came out perfectly cooked. (I let the pressure go down by itself for another 10 mins or so). I used to bake these root vegetables in the oven: a 45-minute endeavor with tin foil, and then the sugar sometimes oozes out of the venting holes I made into the skin with a fork, and bake into black, as well.
Water, the versatile substance of life, comes in three phases, depending on its temperature⁠— and the pressure it is under. Liquid water under a higher pressure cooks (turns into steam) at a higher temperature. A pressure cooker operates at roughly 2 atmospheres of pressure —12 to 15 pounds per square inch (psi) above atmospheric pressure (which is roughly 15 psi). At 12 psi above sea level pressure, pressure water boils at 117 °C (243 °F). Yes, that sounds like a modest temperature elevation compared to an oven, but the steam sealed in the cooker has an enormous capacity for carrying and transmitting heat to the food to cook it. 
Just as an interesting aside: the triple point of water occurs at 0.01 °C in a near-vacuum. That point at the upper right called the critical point is where water vapor (steam) is warm enough so that no amount of pressure brought to bear on it, will liquefy it.

Thursday/ do rainbows have seven colors?

Here is my picture of tonight’s rainbow that was visible just before sunset, now at 8.08 pm.

Rainbows are optical illusions: reflected sunlight that is scattered by suspended drops of moisture in the atmosphere. Moreover, the multicolored band with ‘seven’ colors is an artefact of human color vision. There is no banding in a black-and-white photo of a rainbow, only a smooth gradation of intensity to a maximum, then fading again towards the other side.
– Paraphrased from the Wikipedia entry for Rainbow.

Wednesday/ destination: the second Lagrange point

The $10-billion James Webb Space Telescope (JWST) is on its way to Earth’s second “Lagrange point” (referred to as L2). It should get there in 26 more days. After that, it will be 5 more months before we will hopefully start to receive images from the telescope. (The temperatures on the telescope have to stabilize, and it has to be calibrated).

L2 is theoretically a point in space. In practice, it is a region some 500,000 mi (800,000 km) wide, in which objects can maintain a stationary position relative to Earth, with the barest minimum of propulsive force needed to keep them there.

The illustrations and explanation below are from Scientific American.

Credit: Matthew Twombly
My note: Earth will always be between JWST and the Sun, shielding it with what is called Earth’s magnetotail (the broad elongated extension of a planet’s magnetosphere on the side away from the Sun). The moon, of course, will still orbit Earth as it always does. (On the graphic, the moon’s current position just happens to be between JWST and Earth).

From Scientific American:
The most ambitious space telescope built to date is about to start peering at the universe through infrared eyes. The $10-billion James Webb Space Telescope (JWST) is designed to see farther back in space and time than ever before, where light has been stretched by the expansion of space into much longer wavelengths. To see this faint light, the telescope must observe far from Earth and its contaminating light and heat. After launch, JWST will travel 1.5 million kilometers to Earth’s second “Lagrange point” (L2), a spot in space where the gravitational forces of our planet and the sun are roughly equal, creating a stable orbital location. This vantage point will allow JWST to orbit with its giant sunshield positioned between the telescope and the sun, Earth and moon, shielding the telescope and keeping it at a frigid –370 degrees Fahrenheit (-223 degrees Celsius).

Credit: Matthew Twombly (graphic); Heidi B. Hammel/Shari Lifson/Association of Universities for Research in Astronomy (content consultants)

Tuesday/ Happy December Solstice

I first wrote ‘Happy Winter Solstice’, but that would exclude my readers in the southern hemisphere (for whom it is Summer Solstice, of course).

The sun is positioned directly above the Tropic of Capricorn (23°26ʹ S). 
For anyone at the North Pole, the sun will not appear above the horizon for 11 weeks. (At the South Pole, the sun will not set for 11 weeks).
Here at Seattle’s northern latitude (47.6062° N), our daylight timewill now gradually lengthen from about 8 hours to 16 hours (at our own summer solstice in June of 2022).

Sunday/ the Glasgow Climate Pact

The 97 points of the Glasgow Climate Pact (COP26) make heavy reading for a Sunday night, but I glanced through it. Man a.. and China and Russia did not even attend the conference.

The United States is at least serious again to make an effort, but as George Monbiot writes for The Guardian, it’s too late for incremental changes, and we need a critical minority to commit to the cause.

It works like this: There’s an aspect of human nature that is simultaneously terrible and hopeful: most people side with the status quo, whatever it may be. A critical threshold is reached when a certain proportion of the population change their views. Other people sense that the wind has changed, and tack around to catch it. There are plenty of tipping points in recent history: the remarkably swift reduction in smoking; the rapid shift, in nations such as the UK and Ireland, away from homophobia; the #MeToo movement, which, in a matter of weeks, greatly reduced the social tolerance of sexual abuse and everyday sexism.
But where does the tipping point lie? Researchers whose work was published in Science in 2018 discovered that a critical threshold was passed when the size of a committed minority reached roughly 25% of the population. At this point, social conventions suddenly flip. Between 72% and 100% of the people in the experiments swung round, destroying apparently stable social norms. As the paper notes, a large body of work suggests that “the power of small groups comes not from their authority or wealth, but from their commitment to the cause”.

As far as the hard numbers go, here is a to-the-point summary written by Adam Taylor and Harry Taylor in the Washington Post:
Where (temperature change) are we at now?
A Washington Post analysis of multiple data sets has found that Earth has already warmed more than 1 degree Celsius on average over the past century. Some places may already have seen rises of 2 °C.

Where are we headed?
In their latest report, the Intergovernmental Panel on Climate Change (IPCC) estimated that under the current scenario, the world would likely hit the 1.5 °C threshold by 2040. Under the most optimistic scenario presented in the report, global temperatures would reach 1.5 °C by the middle of the century and then drop back down as emissions were cut further, potentially avoiding some of the worst outcomes.
Under the worst scenario envisaged by the IPCC, the best estimate was that the world will likely see a rise of 4.4 °C by the end of the century — with an extreme impact on life on Earth.

Human activity has warmed the climate by 1 °C (or maybe a little more) over the last century. Experts think it is here at then end of 2021, out of reach to limit further warming by the end of the century to 1.5 °C. These simulations show that even if humanity arrives at the year 2100 with warming limited to 2 °C, there will be places (the poles) that will see temperature rises of some 10 °C, with very dramatic and catastrophic impacts on Earth’s climate.
[Infographic from the Washington Post]

Saturday/ a geomagnetic storm

It’s too late now, but I should have driven out some dark elevated area outside the city (Seattle) to see if I can spot some aurora borealis light resulting from Thursday’s X-class* solar flare.

*X-class denotes the most intense flares, while the number provides more information about its strength. Flares that are classified X10 or stronger are considered unusually intense.

We’re in Solar Cycle 25, which started in Dec. 2019. (Extensive recording of solar sunspot activity began in 1755). Each solar cycle lasts roughly every 11 years. The Sun’s magnetic field goes through a cycle after which it completely flips: the north and south poles switch places. Then it takes about another 11 years for the Sun’s north and south poles to flip back again.

NASA’s Solar Dynamics Observatory captured this image of a solar flare — as seen in the bright flash at the Sun’s lower center at Sunspot AR2887 — on Oct. 28, 2021. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is colorized here in teal.
[Picture Credit: NASA/Solar Dynamics Observatory]
The Carrington Event was a powerful geomagnetic storm on 1–2 September 1859, during Solar Cycle 10. A solar coronal mass ejection hit Earth’s magnetosphere and induced the largest geomagnetic storm on record. The associated “white light flare” in the solar photosphere was observed and recorded by British astronomers Richard Carrington and Richard Hodgson. The storm created strong auroral displays and caused serious damage to telegraph systems.
Auroras were seen around the world, those in the northern hemisphere as far south as the Caribbean; those over the Rocky Mountains in the U.S. were so bright that the glow woke gold miners, who began preparing breakfast because they thought it was morning.
People in the northeastern United States could read a newspaper by the aurora’s light.

Sunday/ Happy Pi(e) Day

Here’s a ‘Pi Day’ picture from Twitter. (We write March 14 as 3.14 here in the United States).

From Wikipedia:
The number π (/paɪ/) is a mathematical constant. It is defined as the ratio of a circle’s circumference to its diameter, and it also has various equivalent definitions. It appears in many formulas in all areas of mathematics and physics. The earliest known use of the Greek letter π to represent the ratio of a circle’s circumference to its diameter was by Welsh mathematician William Jones in 1706. It is approximately equal to 3.14159. It has been represented by the Greek letter “π” since the mid-18th century, and is spelled out as “pi”. It is also referred to as Archimedes’ constant.

Hmm. A berry pie with a very pi crust: pi to 13 decimal places. This is a very fine approximation of pi. NASA’s Jet Propulsion Laboratory uses pi to 15 places in its computer programs that calculate space flight distances and trajectories to say, land a over on Mars.

Wednesday/ a touch of spring

We had 58°F (14°C) at the high here in the city, and sun all day.
The little crocuses with their flowers have popped out of the ground, just a little bit later than they were last year.

And how do they know when to flower? It’s very complicated. Flowering plants have a master gene called APETALA1 (AP1). A combination of sunlight, soil temperature and water, prompts the AP1 gene to generate proteins, which in turn, switch on more than 1,000 other genes that are involved in the flowering process.

Thursday/ time is fleeting

Art is long, and Time is fleeting ..
– Henry Wadsworth Longfellow, from his poem ‘A Psalm of Life’ (1839)


iPhone home screen from Twitter, showing 21:21 on Jan 21.

I know that our Gregorian calendar and Arabic numerals, used for date & time notation, is a completely man-made construct.

Even so: the clock here on the Pacific coast is about to run into a cascade of 21s, the way it has all over the world today.

At 9.21:21 pm tonight it will be the ..
21st second into the
21st minute into the
21st hour into the
21st day into the
21st year into the
21st century.

In Earth’s geological timeframe of 4.6 billion years, humans find themselves in the Halocene epoch of the Quarternary Period.  The Halocene epoch started some 11,650 years ago. I love the pictures of the dinosaurs and animals. That must be a Neanderthal man, and hey, a space shuttle right at the end. Last space shuttle flight was in 2011, but that’s OK. That was just a moment ago. [Source: A blog called NaturPhilosophie, run out of Glasgow, Scotland]

Thursday/ New Year’s Eve

Hooray! We get to erase 2020, annus horribilis that it was, and go into 2021.

There are no guarantees that 2021 will be better —but we do have vaccines now, to fight the pandemic with.

The Biden administration will soon start to pick up the pieces from the last four years. At least there was some economic help from the government this year, with more to come (the $600 checks, $300 per week unemployment benefits extended through mid-March).

Tuesday/ the Great Conjunction of Saturn and Jupiter

Galileo started to turn his telescope to the heavens in 1609.
He soon discovered Jupiter’s four biggest moons, and that Saturn had a ‘strange oval surrounding’. Right around that time, there was the Great Conjunction of 1623 – but it is almost certain that Galileo did not see it.
Astronomers and historians have not found the event mentioned anywhere in the records of that time.

Check out this incredible picture posted on Sunday night by J. Rehling on Twitter (@JRehling). 

In his Twitter thread notes below, he says that he used a 9.25″ (that means wide) Celestron telescope with a 2350 mm focal length and an ASI 1600 mm monochrome camera, with separate filters for clear, red, green, and blue.

And when is the next super-close pairing of the two planets? March 15, 2080.

The Great Conjunction of Saturn and Jupiter, posted on Sunday night by J. Rehling on Twitter (@JRehling).

Wednesday/ the last of the superheavies .. for now

Below is the last batch of superheavy element slides that I had made for my collection.

Oganesson, atomic number 118, is the element with the heaviest atoms. Can even heavier elements be made, with atomic numbers 119 and 120?
Here’s what Samanth Subramanian wrote for Bloomberg Businessweek in an article from Sept. 2019:
‘The periodic table was never expected to furl out endlessly. In these extreme reaches of the table, cramming proton after proton into a nucleus renders it more and more precarious. The positive charges repel one another until the nucleus decays near-instantly—before electrons have had a chance to settle into orbit to provide an atomic structure and before the passage of a hundred-trillionth of a second, the time an atom must exist to count as a new element.

Were you to reach element 173, scientists theorize, matters could get even stickier. The effects of Einsteinian relativity would kick in, and electrons would behave in peculiar ways. Those atoms may not even be atoms as we know them—their electron clouds dissolving and the regular periodicity of their properties swerving wildly off course.

But physics presents difficulties long before 173. Even for 119, waiting just offstage, scientists aren’t sure which two elements they might fuse. Oganesson, No. 118, was the product of an especially stable isotope of calcium slamming into californium. But that calcium can’t just be directed toward einsteinium, the next element after californium; a handful of nuclear reactors around the world generate only a milligram or so of einsteinium for research every year.

Seven years ago at GSI, Christoph Düllmann and his team tried a combination of titanium (22 protons) and berkelium (97 protons), without results. In Japan, Haba has been working with vanadium (23 protons) and curium (96 protons). In a $60 million Superheavy Element Factory in Dubna, inaugurated in March, scientists are pelting berkelium with an extra-stable titanium isotope, its nucleus fat with six neutrons more than standard titanium. But at the moment, Düllmann says, 118 “is the end of the story. We now need one more idea. Maybe we’ll get enough einsteinium at some point. But we have no idea what combination of elements is best for 119 and 120. The number of theories is the same as the number of theorists you talk to.’

 

Friday/ three more ‘superheavies’

Here are the next three elements that I had made little panels for, to add to my extended ‘Elements’ picture collection.

Life is short for these, the elements with the heaviest atoms. Their atoms emerge from high-energy nuclear collisions, usually with scant time for detection before they break up into lighter atoms.

Friday/ the periodic table is now full

My current digital picture project is to add slides to my set of pictures for the elements. The pictures I have are scanned from the 1965 book ‘The Elements’, published by TIME-LIFE magazine.

At that time (1965), the elements up to Lawrencium (atomic number 103) were known. By 2002, scientists had created and identified all the ones up to Oganesson (atomic number 118).  The periodic table of elements is now ‘full’ (see picture below).

I hope the nuclear physicists are not just playing with their particle accelerators, but are contributing to the quest for the world’s first fusion reactor (that can produce gigawatts of energy). We need to save the planet.

Bombarding a very heavy element with atoms from a smaller one such as calcium, make its nucleus unstable, and then it decays into several other elements. Some of these are very, very fleeting: the new daughter elements are still unstable, and then decay further. [Graphics from Dutch newspaper NRC Handelsblad].
Here are some scans from the 1965 book (Oxygen, Iron, Copper and Radon).
I had text blocks (from the book) for Einsteinium, Fermium, Mendelevium, Nobelium and Lawrencium), but wanted to add in pictures for them.
For the rest up to Organesson, I will have to make brand new up text blocks, as well as pictures.